A new method for estimating nonsynonymous substitutions and its applications to detecting positive selection.
نویسندگان
چکیده
The standard methods for computing the number of nonsynonymous substitutions (Ka) lump all amino acid changes into one single class, even though their rates of substitution vary by at least 10-fold (Tang et al., 2004). Classifying these changes by their physicochemical properties has not been suitably effective in isolating the fastest evolving classes of changes. We now propose to use the Universal index U of Tang et al. (2004) to classify the 75 elementary amino acid changes (codons differing by 1 bp) by their evolutionary exchangeability. Let Ki denote the Ka value of each class (i = 1, ..., 75 from the most to the least exchangeable). The cumulative Ki for the top 10 classes, denoted Kh (for high-exchangeability types), has two important properties: (1) Kh usually accounts for 25%-30% of total amino acid changes and (2) when the observed number of amino acid substitutions is large, Kh is predictably twice the value of Ka. This shall be referred to as the twofold approximation. The new method for estimating Kh is applied to the comparisons between human and macaque and between mouse and rat. The twofold approximation holds well in these data sets, and the signature of positive selection can be more easily discerned using the Kh statistic than using Ka. Many genes with Ka/Ks > 0.5 can now be shown to have Kh/Ks > 1 and to have evolved adaptively, at least for the high-exchangeability group of amino acid changes.
منابع مشابه
Methods for incorporating the hypermutability of CpG dinucleotides in detecting natural selection operating at the amino acid sequence level.
In detecting natural selection operating at the amino acid sequence level by comparing the rates of synonymous (r(S)) and nonsynonymous (r(N)) substitutions, the rates of synonymous and nonsynonymous mutations are assumed to be approximately the same. In reality, however, these rates may not be the same if different proportions of synonymous and nonsynonymous sites overlap with CpG dinucleotide...
متن کاملA method for detecting positive selection at single amino acid sites.
A method was developed for detecting the selective force at single amino acid sites given a multiple alignment of protein-coding sequences. The phylogenetic tree was reconstructed using the number of synonymous substitutions. Then, the neutrality was tested for each codon site using the numbers of synonymous and nonsynonymous changes throughout the phylogenetic tree. Computer simulation showed ...
متن کاملEstimating synonymous and nonsynonymous substitution rates under realistic evolutionary models.
Approximate methods for estimating the numbers of synonymous and nonsynonymous substitutions between two DNA sequences involve three steps: counting of synonymous and nonsynonymous sites in the two sequences, counting of synonymous and nonsynonymous differences between the two sequences, and correcting for multiple substitutions at the same site. We examine complexities involved in those steps ...
متن کاملAccuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites.
The parsimony method of Suzuki and Gojobori (1999) and the maximum likelihood method developed from the work of Nielsen and Yang (1998) are two widely used methods for detecting positive selection in homologous protein coding sequences. Both methods consider an excess of nonsynonymous (replacement) substitutions as evidence for positive selection. Previously published simulation studies compari...
متن کاملFrequent false detection of positive selection by the likelihood method with branch-site models.
Positive Darwinian selection promotes fixations of advantageous mutations during gene evolution and is probably responsible for most adaptations. Detecting positive selection at the DNA sequence level is of substantial interest because such information provides significant insights into possible functional alterations during gene evolution as well as important nucleotide substitutions involved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2006